Methane seepage and its relation to slumping and gas hydrate at the Hikurangi margin, New Zealand
نویسندگان
چکیده
Dissolved methane and high resolution bathymetry surveys were conducted over the Rock Garden region of Ritchie Ridge, along the Hikurangi margin, eastern New Zealand. Multibeam bathymetry reveals two prominent, northeast trending ridges, parallel to subduction along the margin, that are steep sided and extensively slumped. Elevated concentrations of methane (up to 10 nM, 10× background) within the water column are associated with a slump structure at the southern end of Eastern Rock Garden. The anomalous methane concentrations were detected by a methane sensor (METS) attached to a conductivity-temperature-depth-optical backscatter device (CTDO) and are associated with elevated light scattering and flare-shaped backscatter signals revealed by the ship’s echo sounder. Increased particulate matter in the water column, possibly related to the seepage and/or higher rates of erosion near slump structures, is considered to be the cause of the increased light scattering, rather than bubbles in the water column. Methane concentrations calculated from the METS are in good agreement with concentrations measured by gas chromatography in water samples collected at the same time. However, there is a c. 20 min (c. 900 m) delay in the METS signal reaching maximum CH4 concentrations. The maximum methane concentration occurs near the plateau of Eastern Rock Garden close to the edge of a slump, at 610 m below sea level (mbsl). This is close to the depth (c. 630 mbsl) where a bottom simulating reflector (BSR) pinches out at the seafloor. Fluctuating water temperatures observed in previous studies indicate that the stability zone for pure methane hydrate in the ocean varies between 630 and 710 mbsl. However, based on calculations of the geothermal gradients from BSRs, we suggest gas hydrate in the study area to be more stable than hydrate from pure methane in sea water, moving the phase boundary in the ocean upward. Small fractions of additional higher order hydrocarbon gases are the most likely cause for increased hydrate stability. Relatively high methane concentrations have been measured down to c. 1000 mbsl, most likely in response to sediment slumping caused by gas hydrate destabilisation of the sediments and/or marking seepage through the gas hydrate zone.
منابع مشابه
Cold Seep Epifaunal Communities on the Hikurangi Margin, New Zealand: Composition, Succession, and Vulnerability to Human Activities
Cold seep communities with distinctive chemoautotrophic fauna occur where hydrocarbon-rich fluids escape from the seabed. We describe community composition, population densities, spatial extent, and within-region variability of epifaunal communities at methane-rich cold seep sites on the Hikurangi Margin, New Zealand. Using data from towed camera transects, we match observations to information ...
متن کاملTemporal constraints on hydrate-controlled methane seepage off Svalbard.
Methane hydrate is an icelike substance that is stable at high pressure and low temperature in continental margin sediments. Since the discovery of a large number of gas flares at the landward termination of the gas hydrate stability zone off Svalbard, there has been concern that warming bottom waters have started to dissociate large amounts of gas hydrate and that the resulting methane release...
متن کاملWidespread methane seepage along the continental margin off Svalbard - from Bjørnøya to Kongsfjorden
Numerous articles have recently reported on gas seepage offshore Svalbard, because the gas emission from these Arctic sediments was thought to result from gas hydrate dissociation, possibly triggered by anthropogenic ocean warming. We report on findings of a much broader seepage area, extending from 74° to 79°, where more than a thousand gas discharge sites were imaged as acoustic flares. The g...
متن کاملPrediction of Structural Changes in Gas Hydrate for Methane and Ethane Mixture by Using Tangent Plane Distance Minimization
Abstract: Â In this study, the change in the crystalline structure of gas hydrate was predicted for ternary mixture of methane-ethane-water. For this purpose, the tangent plane distance (TPD) minimization method was used. First, the calculations were performed for the binary mixtures of methane-water and ethane-water as the gas and liquid phases. The results show that for a binary mixture of th...
متن کاملMicrobial Communities of Deep-Sea Methane Seeps at Hikurangi Continental Margin (New Zealand)
The methane-emitting cold seeps of Hikurangi margin (New Zealand) are among the few deep-sea chemosynthetic ecosystems of the Southern Hemisphere known to date. Here we compared the biogeochemistry and microbial communities of a variety of Hikurangi cold seep ecosystems. These included highly reduced seep habitats dominated by bacterial mats, partially oxidized habitats populated by heterotroph...
متن کامل